GENERAL \& TECH INFO

Points To Remember

Fluid or plastic concrete exerts the same side pressure on forms regardless of their width.

Plastic concrete exerts the same pressure on forms regardless of their width.

As you add more fluid or plastic concrete to forms, the pressure will build up toward the bottom at about the rate of 150 pounds per foot of depth. This will be true as long as all concrete remains in a plastic state.

Example: Eight feet of fluid or plastic concrete bears on the bottom foot of forms with a pressure of 8×150 pounds or 1200 pounds persquare foot.

As concrete hardens, lateral pressure on forms decreases.

Concrete cures and gains strength faster with an increase in temperature.
Example: At $21^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{F}\right)$, concrete sets in approximately $1 \frac{1}{4}$ hour. At $4.5^{\circ} \mathrm{C}\left(40^{\circ} \mathrm{F}\right)$ concrete will set up in about $13 / 4$ hour.

Slab Formwork Design Loads

The loadings used in the designs of slab formwork consists of a dead load and a live load. The weight of the formwork plusthe concrete is considered dead load while the live load is made up of the with of workers, equipment, material storage and other like items which is supported by the formwork. The tables below tabulate design loads based on the concrete weight for the thickness indicated, and includes 10 pounds per square foot for the weight of forms and a live load of 50 to 75 pounds per square foot as indicated. A live of load of 75 pound per square foot is generally used when motorized carts are used to transport concrete during the placing operation.

Slab Formwork Design Load for Uniform Slab Thic kness
(Includes 50 psf Live Load)
Pounds per Square Foot for Indic ated Thic kness

$2 "$	$4^{\prime \prime}$	$6^{\prime \prime}$	$8 "$	$10 "$	$12 "$	14	$16^{\prime \prime}$	$18^{\prime \prime}$	$20 "$
100	110	135	160	185	210	235	260	285	310

(Includes 75 psf Live Load)
Pounds per Square Foot for Indic ated Thic kness

$2 "$	$4^{\prime \prime}$	$6^{\prime \prime}$	$8^{\prime \prime}$	$10^{\prime \prime}$	$12^{\prime \prime}$	14	$16^{\prime \prime}$	$18^{\prime \prime}$	$20^{\prime \prime}$
125^{*}	135	160	185	210	235	260	285	310	335

[^0]For a complete explanation of general objectives in formwork design, planning, materials and accessories, loads and pressures, design tables and much more, it is recommended that a copy of ACl publication SP-4 "Formwork for Concrete" be obtained. The current edition is available from American Concrete Institute. PO Box 9094, Farmington Hills, MI 48333.

Sound Your Concrete

In order to know the firmness of your concrete as you make each lift (summer or winter), use a 5/8" piece of rebar and SOUND YOUR CONCRETE! As you push the rebar down through your concrete, you will be able to feel if your previously placed concrete has taken its initial set. This test will help you to determine if the concrete in your form is firm enough and ready to support an additional lift of concrete, without excessive pressure on your form and form ties.

3

Still later - 5/8" rebar penetratessecond lift almost all the way into second pour - better give it a little more time to set up.

Still later - Again you sound your concrete and now find it firming up. Now you can safely finish your pour.

2

Later - Now 5/8" rebar only penetrates concrete a few inches - it is now ready to make your next placement of concrete.

ACI 347-04

Unit weight coefficient: $\mathbf{C}_{\mathbf{w}}$

Less than 140 pcf:
$C_{w}=0.5[1+(w / 145 \mathrm{pcf})]$
(but not less than 0.80)

140 to 150 pcf:
$C_{w}=1.0$

More than $\mathbf{1 5 0}$ pcf:
$C_{w}=w / 145$ pcf

Chemistry coefficient C_{c}

Type I, II and III, w/o retarders: $\mathrm{C}_{\mathrm{c}}=1.0$

Type I, II and III w/ retarders: $C_{c}=1.2$

Other types containing less than 70% slag or 40% fly ash, w/o retarders: $C_{c}=1.2$

Othertypes containing less than 70% slag or 40% fly ash $\mathbf{w} /$ retarders: $\mathrm{C}_{\mathrm{c}}=1.4$

Blends containing more than 70% slag or 40% fly ash: $C_{c}=1.4$

BASE VALUES OF LATERAL PRESSURE ON WAL FORMS Multiply value by unit weight \& chemistry coefficients to obtain pressure on wall form												
Table based on: $\mathbf{C c}=1.0 \quad \mathbf{C w}=1.0$												
RATE OF PLACEMENT	p, maximum lateral pressure, psf, fortemperature indicated											
	90 F		80 F		70 F		60 F		50 F		40 F	
1	663	250	728	263	810	279	920	300	1074	330	1305	375
2	694	350	763	375	850	407	967	450	1130	510	1375	600
3	726	450	798	488	890	536	1013	600	1186	690	1445	825
4	757	550	833	600	930	664	1060	750	1242	870	1515	1050
5	788	650	868	713	970	793	1107	900	1298	1050	1585	1275
6	819	750	903	825	1010	921	1153	1050	1354	1230	1655	1500
7	850		938		1050		1200		1410		1725	
8	881		973		1090		1247		1466		1795	
9	912		1008		1130		1293		1522		1865	
10	943		1043		1170		1340		1578		1935	
11	974		1078		1210		1387		1634		2005	
12	1006		1113		1250		1433		1690		2075	
13	1037		1148		1290		1480		1746		2145	
14	1068		1183		1330		1527		1802		2215	
15	1099		1218		1370		1573		1858		2285	
16	1130		1253		1410		1620		1914		2355	
17	1161		1288		1450		1667		1970		2425	

$\mathrm{P}=\mathrm{CwCc}[150+43,400 / \mathrm{T}+2800 \mathrm{R} / \mathrm{T}]$ applies where placement height is greater than $14{ }^{\prime}$.
$\mathrm{P}=\mathrm{CWCc}[150+9000 \mathrm{R} / \mathrm{T}]$ (shaded) applies for R less than $7 \mathrm{FT} / \mathrm{HR}$.

ACI 347-04 (Columns)

Base values of lateral pressure on column forms, * psf, for various pour rates and concrete temperatures.
Multiply value from this table by unit weight and chemistry coefficients to obtain pressure for design of column forms.

Rate of placement R, ft per hr	Concrete temperature during placement, degrees F					
	$90^{\circ} \mathrm{F}$	$80^{\circ} \mathrm{F}$	$70^{\circ} \mathrm{F}$	$60^{\circ} \mathrm{F}$	$50^{\circ} \mathrm{F}$	$40^{\circ} \mathrm{F}$
1	250	263	279	300	330	375
2	350	375	407	450	510	600
3	450	488	536	600	690	825
4	550	600	664	750	870	1050
5	650	713	793	900	1050	1275
6	750	825	921	1050	1230	1500
7	850	938	1050	1200	1410	1725
8	950	1050	1179	1350	1590	1950
9	1050	1163	1307	1500	1770	2175
10	1150	1275	1436	1650	1950	2400
11	1250	1388	1564	1800	2130	2625
12	1350	1500	1693	1950	2310	2850
13	1450	1613	1821	2100	2490	
14	1550	1725	1950	2250	2670	
16	1750	1950	2207	2550		
18	1950	2175	2464	2850		
20	2150	2400	2721			
22	2350	2625	2979			
24	2550	2850				
26	2750					
28	2950					

* Base value of lateral pressure equals $150+9000 \mathrm{R} / \mathrm{T}$

NOTE: Depending on coefficient values, the minimum pressure of $600 \mathrm{C}_{\mathrm{w}}$ may govem. Do not use pressures in excess of wh.

Typical Form Tie Spacing For Wall Forms

LATERAL PRESSURE (IBS) IN PSF	LOADS ON FORM TIES (IN KIPS)															
3,000	3.0	5.3	6.0	12.0	18.0	27.0	36.0	48.0	60.0	75.0	90.0	108.0	126.0	147.0	168.0	192.0
2,900	2.9	5.2	5.8	11.6	17.4	26.1	34.8	46.4	58.0	72.5	87.0	104.4	121.8	142.1	162.4	185.6
2,800	2.8	5.0	5.6	11.2	16.8	25.2	33.6	44.8	56.0	70.0	84.0	100.8	117.6	137.2	156.8	179.2
2,700	2.7	4.8	5.4	10.8	16.2	24.3	32.4	43.2	54.0	67.5	81.0	97.2	113.4	132.3	151.2	172.8
2,600	2.6	4.6	5.2	10.4	15.6	23.4	31.2	41.6	52.0	65.0	78.0	93.6	109.2	127.4	145.6	166.4
2,500	2.5	4.5	5.0	10.0	15.0	22.5	30.0	40.0	50.0	62.5	75.0	90.0	105.0	122.5	140.0	160.0
2,400	2.4	4.3	4.8	9.6	14.4	21.6	28.8	38.4	48.0	60.0	72.0	86.4	100.8	117.6	134.4	153.6
2,300	2.3	4.1	4.6	9.2	13.8	20.7	27.6	36.8	46.0	57.5	69.0	82.8	96.6	112.7	128.8	147.2
2,200	2.2	3.9	4.4	8.8	13.2	19.8	26.4	35.2	44.0	55.0	66.0	79.2	92.4	107.8	123.2	140.8
2,100	2.1	3.7	4.2	8.4	12.6	18.9	25.2	33.6	42.0	52.5	63.0	75.6	88.2	102.9	117.6	134.4
2,000	2.0	3.6	4.0	8.0	12.0	18.0	24.0	32.0	40.0	50.0	60.0	72.0	84.0	98.0	112.0	128.0
1,900	1.9	3.4	3.8	7.6	11.4	17.1	22.8	30.4	38.0	47.5	57.0	68.4	79.8	93.1	106.4	121.6
1,800	1.8	3.2	3.6	7.2	10.8	16.2	21.6	28.8	36.0	45.0	54.0	64.8	75.6	88.2	100.8	115.2
1,700	1.7	3.0	3.4	6.8	10.2	15.3	20.4	27.2	34.0	42.5	51.0	61.2	71.4	83.3	95.2	108.8
1,600	1.6	2.8	3.2	6.4	9.6	14.4	19.2	26.6	32.0	40.0	48.0	57.6	67.2	78.4	89.6	102.4
1,500	1.5	2.7	3.0	6.0	9.0	13.5	18.0	24.0	30.0	37.5	45.0	54.0	63.0	73.5	84.0	96.0
1,400	1.4	2.5	2.8	5.6	8.4	12.6	16.8	22.0	28.0	35.0	42.0	50.4	58.8	68.6	78.4	89.6
1,300	1.3	2.3	2.6	5.2	7.8	11.7	15.6	20.8	26.0	32.5	39.0	46.8	54.6	63.7	72.8	83.2
1,200	1.2	2.1	2.4	4.8	7.2	10.8	14.4	19.2	24.0	30.0	36.0	43.2	50.4	58.8	67.2	76.8
1,100	1.1	2.0	2.2	4.4	6.6	9.9	13.2	17.6	22.0	27.5	33.0	39.6	46.2	53.9	61.6	70.4
1,000	1.0	1.8	2.0	4.0	6.0	9.0	12.0	16.0	20.0	25.0	30.0	36.0	42.0	49.0	56.0	64.0
900	0.9	1.6	1.8	3.6	5.4	8.1	10.8	14.4	18.0	22.5	27.0	32.4	37.8	44.1	40.4	57.6
800	0.8	1.4	1.6	3.2	4.8	7.2	9.6	12.8	16.0	20.0	24.0	28.8	33.6	39.2	44.8	51.2
700	0.7	1.2	1.4	2.8	4.2	6.3	8.4	11.2	14.0	17.5	21.0	25.2	29.4	34.3	39.2	44.8
600	0.6	1.1	1.2	2.4	3.6	5.4	7.2	9.6	12.0	15.0	18.0	21.6	25.2	29.4	33.6	38.4
Area SF (Tie spacing)	$\begin{gathered} 1.0 \\ \left(1^{\prime} \times 1^{\prime}\right) \end{gathered}$	$\begin{gathered} 1.8 \\ \left(16^{\prime \prime} \times 16^{\prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 2.0 \\ \left(1^{\prime} \times 2\right. \text { ' } \end{gathered}$	$\begin{gathered} 4.0 \\ \left(2^{\prime} \times 2^{\prime}\right) \end{gathered}$	$\begin{gathered} 6.0 \\ \left(2^{2} \times 3^{\prime}\right) \end{gathered}$	$\begin{gathered} 9.0 \\ \left(3^{\prime} \times 3^{\prime}\right) \end{gathered}$	$\begin{gathered} 12.0 \\ \left(3^{\prime} \times 4^{\prime}\right) \end{gathered}$	$\begin{gathered} 16.0 \\ \left(4^{\prime} \times 4^{\prime}\right) \end{gathered}$	$\begin{gathered} 20.0 \\ \left(4^{\prime} \times 5^{\prime}\right) \end{gathered}$	$\begin{gathered} 25.0 \\ \left(5^{\prime} \times 55^{\prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 30.0 \\ \left(5^{\prime} \times 6^{\prime}\right) \end{gathered}$	$\begin{gathered} 36.0 \\ \left(6^{\prime} \times 6^{\prime}\right) \end{gathered}$	$\begin{gathered} 42.0 \\ \left(6^{\prime} \times 7^{\prime}\right) \end{gathered}$	$\begin{gathered} 49.0 \\ \left(7^{\prime} \times 77^{\prime}\right) \end{gathered}$	$\begin{gathered} 56.0 \\ \left(7^{\prime} \times 8^{\prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 64.0 \\ \left(8^{\prime} \times 8^{\prime}\right) \end{gathered}$
Recommend Form Ties			Form Ties SWL (KIPS)					Recommend Form Ties				Form Ties SWL (KIPS)				
1" Threadbar			63.70					She Bolt with 3/4" Coil Inner				18.00				
7/8" Threadbar Taper Tie			32.50					She Bolt with 1/2" Coil Inner				9.00				
7/8" Threadbar			39.20					She Bolt with 1/2" N / C Inner				6.30				
1-1/4" to 1" Coil Taper Tie			34.00					2 Strut 1/2" Coil Tie Heavy				6.75				
5/8" Thread Bar Taper Tie			18.40					2 Strut 1/2" Coil Tie Standard				4.50				
5/8" Threadbar			19.10					Snaptie Heavy				3.125				
5/8" DCR Bar			18.40					Snaptie Standard				2.25				
Use the appropriate Fomm Ties for loads below their respective line. A safety factor of 2 has been applied to determine sage working loads (SWL) of ties.																

Note: The above table is based on the following conditions.
Concrete - Made with type 1 cement weighing 150 pcf. contains no admixtures, slump of 4 " or less and normal internal vibration to a depth of 4 ft . or less.

Concrete Temperature - For practical purposes, $50^{\circ} \mathrm{F}$ is used by many form designers as the temperature of fresh concrete during winter, with $70^{\circ} \mathrm{F}$ being used as the summer temperature. This "rule of thumb" appears to work satisfactory unless the concrete has been heated orcooled to a controlled temperature.

Form Ties - Safe working loads are based on a factor of safety of approximately 2 to 1 (ultimate to SWL)

Chart for Determining Required Quantities for Form Ties

Form Tie Calculator Based on $10,000 \mathrm{sq}$. ft of Wall Area or $\mathbf{2 0 , 0 0 0} \mathbf{~ s q}$. ft of Fom Contact Area.	
Form Tie Spacing	Form Ties Required
$16^{\prime \prime} \times 16^{\prime \prime}=1.77$ sq. ft.	5,650
$24^{\prime \prime} \times 24^{\prime \prime}=4.0$ sq. ft.	2,500
$24^{\prime \prime} \times 32$ " $=5.33$ sq. ft.	1,877
$32^{\prime \prime} \times 32$ " $=7.11$ sq. ft.	1,407
32 " $\times 48$ " $=10.67$ sq. ft.	938
$48^{\prime \prime} \times 48^{\prime \prime}=16$ sq. ft.	625
$60^{\prime \prime} \times 60$ " $=25$ sq. ft.	400

NC Threaded Bolt Capacities

Permanent connections in precast construction are normally made with either ferrule inserts or COREWALL slotted inserts using National Course (NC) threaded bolts. These NC Threaded bolts are normally not supplied by Masons Supply. However, as a convenience to the designer, the following chart listed.

	ASTMA-307 BOLTS		ASTMA-325 OR A-449 BOLTS	
Nominal Bolt	Tension	Shear	Tension	Shear
1/4"-20	625 lbs	350 lbs	1,250 lbs	725 lbs
3/8"-16	1,500 lbs	900 lbs	$3,100 \mathrm{lbs}$	1,800 lbs
1/2'-13	2,800 lbs	1,700 lbs	$5,600 \mathrm{lbs}$	$3,400 \mathrm{lbs}$
5/8'-11	4,500 lbs	$2,700 \mathrm{lbs}$	9,000 lbs	$5,400 \mathrm{lbs}$
3/4"-10	6,600 lbs	$4,000 \mathrm{lbs}$	13,300 lbs	8,100 lbs
7/8"-9	9,200 lbs	5,600 lbs	$18,400 \mathrm{lbs}$	11,300 lbs
1"-8	12,000 lbs	7,400 lbs	24,200 lbs	14,900 lbs
1-1/8"-7	15,200 lbs	9,400 lbs	26,700 lbs	16,400 lbs
1-1/4"-7	19,300 lbs	12,000 lbs	$33,900 \mathrm{lbs}$	21,000 lbs
1-1/2"-6	28,100 lbs	17,500 lbs	49,100 lbs	30,600 lbs

Safe working loads shown provide a factor of safety of approximately 3 to 1 (ultimate to SWL). Shear SWL's assume that the threads are included in the shear plane. $1 / 4$ "-20, $3 / 8$ "-16 and $1 / 2^{\prime \prime}-13$ bolts are not recommended for use as structural fasteners. Above information is taken from material provided by Industrial Fastener Institute.

GENERAL \& TECH INFORMATION

MASCO.NET

Safe Spacing of Supports for Double Ledgers or Wales Continuous Over Four or More Supports Based on use of No. 2 Grade Southem Pine or Douglas Fir-Larch

Uniform Load, Pounds per 5 F (Equals Design Load, Pounds perSq. Pt Times Ledger or Wale Centers in ft)	$\mathrm{F}_{\mathrm{b}}=$ varies psi $\mathrm{E}=1,400,000 \mathrm{psi} \quad \mathrm{F}_{\mathrm{v}}=225$ psi				
	Nominal Size Lumber, bxh (S4S) at 19\% Maximum Moisture				
	Double 2×4	Double 2×6	$\begin{gathered} \hline \text { Double } \\ 2 \times 8 \end{gathered}$	Double 3×6	Double 3×8
	$\mathrm{F}_{\mathrm{b}} \mathrm{psi}$				
	1625	1438	1313	1438	1313
1,000	35"	51	64"	66	83"
1,100	33 "	49 "	611	$63^{\prime \prime}$	$79^{\prime \prime}$
1,200	32 "	47 "	$59^{\prime \prime}$	601	76
1,300	30"	45 "	$56 "$	58 "	731
1,400	29	43"	54 "	56	70"
1,500	28 "	42	53 "	54 "	68 "
1,600	27 "	40"	511	52	66
1,700	26	39"	49"	$51 "$	64"
1,800	25 "	38"	48 "	49 "	62 "
1,900	24 "	37"	47"	48 "	$60^{\prime \prime}$
2,000	23 "	36	45 "	47 "	59
2,200	21	34 "	43 "	$44^{\prime \prime}$	56
2,400	20	32 "	42	$43^{\prime \prime}$	$54 "$
2,600	19	30"	40"	$4{ }^{1 \prime}$	511
2,800	18"	29	38"	39 "	50
3,000	18"	28 "	36	38"	48 "
3,200	17"	26	35"	37"	46
3,400	$16 "$	$26 "$	$34^{\prime \prime}$	$35 "$	$45^{\prime \prime}$
3,600	16	25"	33"	$34^{\prime \prime}$	44
3,800	$15^{\prime \prime}$	24 "	32 "	33 "	$43^{\prime \prime}$
4,000	15"	23"	311	32"	42

Note: F_{b} and F_{v} shown above includes a 25% increase because of short term loading conditions. Horizontal shear stress adjustment assumes members have no splits, checks or shakes.

Support spacings are governed by bending, shear or deflection. Maximum deflection $e / 270$ of spacing, but not more than $1 / 8^{\prime \prime}$.

Safe Spacing of Supports for J oists or Studs
Continous Over Four or More Supports
Based on use of No. 2 Grade Spruce-Pine-Fir or Hem-Fir

Uniform Load, Pounds per $1 F$ (Equals Design Load, Pounds per Sq. Ft Times J oist or Stud Centers in ft)	$\mathrm{F}_{\mathrm{b}}=$ varies psi $\quad \mathrm{E}=1,300,000 \mathrm{psi} \quad \mathrm{F}_{\mathrm{v}}=175 \mathrm{psi}$					
	Nominal Size Lumber, bxh (S4S) at 19\% Maximum Moisture					
	2×4	2×6	2×8	3x6	4×2	4×4
	$\mathrm{F}_{\mathrm{b}} \mathrm{psi}$					
	1594	1381	1275	1381	1275	1594
100	62 "	88"	108"	99	41 "	77"
200	52	74 "	911	84"	32	65"
300	44	$65^{\prime \prime}$	82"	76	26 "	59"
400	38 "	56	71	$70^{\prime \prime}$	22	$55^{\prime \prime}$
500	32	50	$63^{\prime \prime}$	65 "	$20^{\prime \prime}$	52"
600	$27{ }^{\prime \prime}$	43 "	$57{ }^{\prime \prime}$	59	18"	48"
700	25 "	39"	511	55	$17{ }^{\prime \prime}$	$44^{\prime \prime}$
800	22 "	35 "	46	51"	16	41 "
900	21"	32"	43 "	47"	15"	39"
1,000	19"	30"	40	43 "	14"	$36 "$
1,100	18"	29	$38{ }^{\prime \prime}$	40	$14^{\prime \prime}$	33"
1,200	$17^{\prime \prime}$	$27{ }^{\prime \prime}$	36	38 "	13"	31 "
1,300	$16^{\prime \prime}$	$26 "$	$34 "$	$36{ }^{\prime \prime}$	12"	29"
1,400	$16^{\prime \prime}$	25 "	33"	$34{ }^{\prime \prime}$	12"	27 "
1,500	15"	24 "	311	32"	11 "	$26 "$
1,600	$15^{\prime \prime}$	23 "	301	311	11	$25^{\prime \prime}$
1,700	$14^{\prime \prime}$	22 "	29	30"	10"	$24^{\prime \prime}$
1,800	$14^{\prime \prime}$	22	29	29"	10"	$23^{\prime \prime}$
1,900	13 "	$21{ }^{\prime \prime}$	28 "	28"	$9{ }^{\prime \prime}$	$22^{\prime \prime}$
2,000	13 "	$21{ }^{\prime \prime}$	$27{ }^{\prime \prime}$	$27{ }^{\prime \prime}$	$9{ }^{\prime}$	21 "
2,200	13"	$20^{\prime \prime}$	$26^{\prime \prime}$	$26 "$	9"	$20 "$
2,400	12"	19"	25 "	$24^{\prime \prime}$	8"	19"
2,600	12 "	18"	24 "	23 "	8"	18 "
2,800	11	18"	24 "	22"	$7{ }^{\prime}$	17"
3,000	111	17"	23 "	22"	$7{ }^{\prime \prime}$	17"

Note: F_{b} and F_{v} shown above includes a 25% increase because of short term loading conditions. Horizontal shear stress adjustment assumes members have no splits, checks or shakes.
Support spacings are governed by bending, shear or deflection. Maximum deflection $e / 270$ of spacing, but not more than $1 / 8^{\prime \prime}$.

GENERAL \& TECH INFORMATION

MASCO.NET

Formula For Battered Wall Ties

1. Get exact height of wall (in inches)
2. Determine tie spacings to use from bottom to top.
3. Calculate distance from each tie row to top of wall.
4. Establish amount of batter in wall (thickness at bottom minus top thickness).
5. Divide amount of batter in into height of wall to get Factor.
6. Divide distance from tie row to top of wall by Factor.
7. Add constant figure (thickness of wall at top)
8. Repeat steps 6 and 7 for each tie row.
9. Change fraction into nearest 1/8".

G ENERAL \& TECH INFORMATION

GENERAL \& TECH INFO

Engineering Data

FORMULAS

Area of a square = length x breadth or height
Area of a rectangle $=$ length x breadth or height
Area of a triangle $=$ base $\times 1 / 2$ altitude.
Area of parallelogram = base x altitude.
Area of trapezoid = altitude $x^{1 / 2}$ the sum of parellel sides.
Area of trapezium = divide into two triangles, total their areas.
Circ umference of circle = diameter \times 3.1416.
Circumference of cirle = radius $\times 6.283185$.
Diameter of circle =circ umference $x .3183$.
Diameter of circle =square root of area $\times 1.12838$.
Radius of circle = circ umference \times. 0159155 .
Area of a circle $=$ half diameter x half circ umference.
Area of a circle = square of diameterx 7854 .
Area of a circle $=$ square of circ umference $x .07958$.
Area of a sector of circle $=$ length of arc $\times 1 / 2$ radius.
Area of a segment of circle = area of sector of equal radiusarea of a triange, when the segment is less, and plus area of triangle, when segment is greater than the semi-circle.
Area of circular ring = sum of the diameter of the two circles x difference of the diameter of the two circles and that product $x .7854$.
Side of square that shall equal area of circle =circumference $\mathbf{x} .2821$.
Diameter of circle that shall contain area of a given square $=$ side of square $\times 1.1284$.

Side of inscribed equilateral triange $=$ diameter $x .86$.
Side of inscribed square =diameter x. 7071 .

Side of inscribed square $=$ circumference $\mathbf{x} .225$.
Area of ellipse = product of the two diameters $x .7854$.
Area of a parabola $=$ base $x^{2 / 3}$ of a altitude.
Area of a regular polygon $=$ sum of its sides x pemendic ular from its center to one of its sides divided by 2.
Surface of sphere = diameter x circ umference.
Solidity of sphere = surface $\times 1 / 6$ diameter.
Solidity of sphere = cube of diameter x .5236.
Solidity of sphere = cube of radius $\times 4.1888$.
Solidity of sphere $=$ cube of circ umference $x .016887$.
Diameter of sphere $=$ cube root of solidity $\times 1.2407$.
Diameter of sphere $=$ square root of surface $x .56419$.
Circumference of sphere $=$ square root of surface $\times 1.772454$.
Circumference of sphere $=$ c ube root of solidity $\times 3.8978$.
Contents of segment of sphere $=$ (height squared plus
three times the square of radius of base) x (height $x .5236$).
Side of insc ribed cube of sphere = radius x 1.1547.
Side of inscribed cube of sphere = square root of diameter.
Contents of pyramid or cone = area of base $\mathbf{x} 1 / 3$ altitude.
Contents of frustum or pyramid or cone = multiply areas
of two ends together and extract square root Add to this root the two areas and $x 1 / 3$ altitude.
Contents of a wedge $=$ area of base $\times 1 / 8$ altitude.

MASCO.NET

MEASURES OF PRESSURES

1 pound per square inch $=144$ pounds per square foot $=0.068$ Atmosphere $=2.042$ inches of mercury (at $62^{\circ} \mathrm{F}$) $=27.7$ inches of water (at $62^{\circ} \mathrm{F}$) $=2.31$ feet of water (at $62^{\circ} \mathrm{F}$)

1 atmosphere $=30$ inches of mercury (at $62^{\circ} \mathrm{F}$) $=14.7$ pounds per square inch $=2116.3$ pounds per square foot $=33.95$ feet of water (at $62^{\circ} \mathrm{F}$).

1 foot of water (at $62^{\circ} \mathrm{F}$) $=62.355$ pounds per square foot $=0.433$ pound persquare inch.

1 inch of mercury (at $\left.62^{\circ} \mathrm{F}\right)=1.132$ foot of water $=13.58$ inches of water $=0.491$ pound per square inch.

WEGHTMEASURE

1 GRAM = 0.03527 OUNCE
1 OUNCE $=28.35$ GRAMS
1 KILOGRAM $=2.2046$ POUNDS
1 POUND $=0.4536$ KILOGRAM
1 METRIC TON $=0.98421$ ENGLISH TON
1 ENGLISH TON = 1.016 METRIC TON
$1 \mathrm{KIP}=4.448$ KILONEWIONS

UNEAR MEASURE
1 kilometer $=0.6214$ mile 1 meter $=3.2808$ feet 1 meter $=1.0936$ yards 1 meter $=39.37$ inches 1 centimeter $=0.3937$ inches 1 millimeter $=0.03937$ inches 1 mile $=1.609$ kilometer 1 yard $=0.9144$ meter 1 foot $=0.3048$ meter 1 foot $=304.8$ millimeters 1 inch $=2.54$ centimeters 1 inch $=25.4$ millimeters

SQUARE MEASURE

1 square kilometer $=0.3861$ square mile $=247.1$ acres
1 hectare $=2.471$ acre $=107.640$ square feet
1 square meter $=10.764$ square feet $=1.196$ square yard
1 square centimeter $=0.155$ square inch
1 square millimeter $=0.00155$ square inch
1 square mile $=2.5899$ square kilometers
1 acre $=0.4047$ hectare
1 square yard $=0.836$ square meter
1 square foot $=0.0929$ square meter $=929$ square centimeters
1 square inch $=6.425$ square centimeters $=645.2$ square millimeters
1 acre $=43,560 \mathrm{sf}$

CUBIC MEASURE

1 cubic meter $=35.314$ cubic feet $=1.308$ cubic yards 1 cubic meter $=264.2$ U.S. gallons
1 cubic centimeter $=0.061$ cubic inch
1 liter(cubic decimeter) $=0.0353$ cubic foot $=61.023$ cubic inch
1 liter $=0.2642$ U.S. gallon $=1.0567$ U.S quart
1 cubic yard $=0.7645$ cubic meter
1 cubic foot $=0.02832$ cubic meter $=28.317$ liters
1 cubic inch $=16.38716$ cubic centimeters
1 U.S. gallon $=3.785$ liters
1 U.S. quart $=0.946$ liter
1 U.S. gallon $=0.91598$ imperial gallon

INCHESTO MIDMEIERS

RRAC.	DECIMAL		MM	INC	HES	MM		HES	MM		HES	MM
$1 / 16=$	$=.0625$	$=$	1.5875	1	$=$	25.4	17	$=$	431.8	33	=	838.2
$1 / 8=$	$=.125$	$=$	3.1750	2	=	50.8	18	$=$	457.2	34	$=$	863.6
$3 / 16=$	$=.1875$	=	4.7625	3	$=$	76.2	19	=	482.6	35	$=$	889.0
$1 / 4=$	$=.25$	$=$	6.3500	4	$=$	101.6	20	$=$	508.0	36	$=$	914.4
$5 / 16=$	$=.3125$	=	7.9375	5	$=$	127.0	21	=	533.4	37	$=$	939.8
$3 / 8=$	$=.375$	=	9.5250	6	$=$	152.4	22	=	558.8	38	=	965.2
$7 / 16=$	$=.4375$	=	11.1125	7	$=$	177.8	23	=	584.2	39	=	990.6
$1 / 2=$	$=.5$	=	12.7000	8	$=$	203.2	24	=	609.6	40	=	1016.0
9/16	$=.5625$	=	14.1288	9	$=$	228.6	25	=	635.0	41	=	1041.4
$5 / 8=$	$=.625$	=	15.8750	10	=	254.0	26	=	660.4	42	=	1066.8
$11 / 16=$	$=.6875$	=	17.4625	11	$=$	279.4	27	=	685.8	43	=	1092.2
$3 / 4=$	$=.75$	=	19.0500	12	$=$	304.8	28	=	711.2	44	=	1117.6
13/16 =	$=.8125$	=	20.6375	13	$=$	330.2	29	=	736.6	45	$=$	1143.0
$7 / 8=$	$=.875$	=	22.2250	14	$=$	356.6	30	=	762.0	46	=	1168.4
$15 / 16=$	$=.9375$	$=$	23.8125	15	$=$	381.0	31	=	787.4	47	$=$	1193.8
				16	=	406.4	32	-	812.8	48	$=$	1219.2

INCHESTO MIDMEIERS

MM INCHES	MM INCHES	MM INCHES	MM INCHES
$1=.0394$	$50=1.9685$	$375=14.7638$	$700=27.5590$
$2=.0787$	$75=2.9528$	$400=15.7480$	$725=28.5433$
$3=.1181$	$100=3.9370$	$425=16.7323$	$750=29.5276$
$4=.1575$	$125=4.9212$	$450=17.7165$	$775=30.5118$
$5=.1968$	$150=5.9055$	$475=18.7008$	$800=31.4960$
$6=.2362$	$175=6.8898$	$500=19.6850$	$825=32.4803$
$7=.2756$	$200=7.8740$	$525=20.6693$	$850=33.4646$
$8=.3150$	$225=8.8583$	$550=21.6535$	$875=34.4488$
$9=.3543$	$250=9.8425$	$575=22.6378$	$900=35.4331$
$10=.3937$	$275=10.8268$	$600=23.6220$	$925=36.4173$
$15=.5906$	$300=11.8110$	$625=24.6063$	$950=37.4016$
$20=.7874$	$325=12.7953$	$650=25.5905$	$975=38.3858$
$25=.9842$	$350=13.7795$	$675=26.5748$	$1000=39.3701$

GENERAL \& TECH INFORMATION

Volume Conversions (Approximate)

US Measure		Multiply by		$\begin{gathered} \mathrm{S} \\ \text { (Metric) } \end{gathered}$		Multiply by		US Customary
in ${ }^{3}$	x	16.0	$=$	ml	x	0.06	$=$	in ${ }^{3}$
fl. oz.	x	29.6	=	ml	x	0.03	=	fl.oz.
cups	x	0.24	=	liters	x	0.036	=	cups
pints	x	0.47	=	liters	x	2.1	=	pints
quarts	x	0.95	=	liters	x	1.06	$=$	quarts
gallons	x	3.79	=	liters	x	0.26		gallons
ft	x	0.028	=	m	x	35.3		ft
yds ${ }^{3}$	x	0.76	=	ft	x	1.31		yds ${ }^{3}$
ft^{3}	x	28.3	=	liters				
yds ${ }^{3}$	x	764.5	=	liters				

Weight Conversions (Approximate)

US Measure		Multiply by		S (Metric)		Multiply by		US Customary
oz.	x	28.3	$=$	grams	x	0.035	=	oz.
lbs.	X	0.45	=	kg	x	2.2	=	lbs.
short tons	x	0.91	$=$	metric tons	x	1.1	$=$	short tons

GENERAL \& TECH INFORMATION

Comparison of Typical Concrete Quantities

1 MPa	$=$	145 psi		1 ft.	$=$	0.3 m
$1 \mathrm{~m}^{3}$	$=$	$1.3 \mathrm{yd}^{3}$		1 in.	$=$	2.5 cm
$1 \mathrm{liter} / \mathrm{m}^{3}$	$=$	$0.2 \mathrm{gal} . / \mathrm{yd}^{3}$		$1 \mathrm{f}$. oz./100 $\mathrm{lbs.cement}$	$=$$65 \mathrm{ml} / 100 \mathrm{~kg}$ cement	
1 kg	$=$	2.2 lbs.		$1 \mathrm{lb} . / \mathrm{yd}^{3}$	$=$	$0.6 \mathrm{~kg} / \mathrm{m}^{3}$
$1 \mathrm{~kg} / \mathrm{m}^{3}$	$=$	$1.686 \mathrm{lbs} / \mathrm{yd}^{3}$		$1 \mathrm{yd}^{3}$	$=$	$0.7646 \mathrm{~m}^{3}$
Unit weight (water)	$=$	$1 \mathrm{~kg} / \mathrm{L}$		$1 \mathrm{fl} oz.$.	$=$	30 ml
1 metric ton $(1000 \mathrm{~kg})$	$=$	2205 lbs.	1 gal.	$=$	3.8 liter	

Comparison of Typic al (Approximate) Concrete Values

Typical Value	US Customary	Metric
Weight: bag of cement	94 lbs.	$\pm 43 \mathrm{~kg}$
Typical Design Strength	3000 psi	21 MPa
High Strength Concrete	6000 psi	41 MPa
Cement Content 5 bag mix 6 bag mix 7 bag mix	$470 \mathrm{lbs} / \mathrm{yd}^{3}$ $564 \mathrm{lbs} / \mathrm{yd}^{3}$ $658 \mathrm{lbs} / \mathrm{yd}^{3}$	$279 \mathrm{~kg} / \mathrm{m}^{3}$ $335 \mathrm{~kg} / \mathrm{m}^{3}$ $390 \mathrm{~kg} / \mathrm{m}^{3}$
Concrete Density	$3-4 \mathrm{lb} / \mathrm{f}^{3}$	$2323 \mathrm{~kg} / \mathrm{m}^{3}$
Slump	4 in.	$7.5-10 \mathrm{~cm}$
Slab thickness		10 cm

AUGNER ANCHOR BRACKET

GLOSSARY OFTERMINOLOGY

ANCHORS

BATIER WALL

BEAM FORM

BEAM POCKET

BEAM SIDE
BOX-OUT

BRACE

BRACKET

BREAK-BACK

BRICK LEDGE
(BRICK SEAT)
BUCK

BUG HOLE

BULKHEAD

CAMBER

CANTILEVER FORM after use. than at its top. will be framed. as wind loads. masonry.

Lumber or metal members used to align vertical formwork. (plumbing strut oralignment device)

A projecting member designed in combination with a specified anchor to attach to a previousconcrete pour so as to support the dead weight of the subsequent formwork and live loads specified.

Devices used to secure formwork, braces or accessories to previously placed concrete, either embedded during placement or set in holes drilled in hardened concrete. There are two basic parts: the embedded anchordevice and the extemal fastener which is removed

Wall with one or both faces slanting from the vertical, usually creating a wall thicker at its base

The entire formwork to form the bottom and both sides of a beam.

Opening left in a vertical member in which a beam is to rest; also an opening in a column or girder form where forms for intersecting beams

Vertical side panels or parts of a beam form.
An opening or pocket formed in concrete positioning a box-like form within the wall forms.

Any extemal structural member used to resist horizontal forces exerted on the forms such

Projecting member from a structure to support weight beyond its face.

The distance from the face of concrete to the end of the remaining imbedded portion of a tie (snapped off wire-tie, or the face of concrete clearance of a three-piece tie inner unit) (also referred to as Cut-Back).

Ledge on wall orfooting to support a course of

Framing to void an opening in a wall, such as a door buck, which forms the opening for a door.

Void on the surface of formed concrete caused by an adhering air or waterbubble not displaced during consolidation.

A partition in the forms blocking fresh concrete from a section of the forms or closing the end of a form, such as at the construction joint.

An inward curvature of a wall or an upward curvature of an elevated slab orbeam form to improve appearance or to compensate for anticipated load deflection.

A special forming technique in which the lateral concrete pressure is resisted by a cantilevered vertical member.

CAPITAL

CAULK

CHAMFER

CHASE

CLEANOUT

CLEAT

CUMBING FORM

COILBOLT

COILTIE

COLUMN CLAMP

CONSTRUCTION JOINT

CONIROLJOINT

CORBEL

CROSSMEMBER

CRUSH PLATE

DADO

DEAD LOAD

DEADMAN

The tapered uppersection of a column under the drop head. Conical shaped with round columns, pyramidal shaped with square columns.

To use a putty-type material to seal form joints from grout leakage.

A beveled external corner. It is usually formed in the concrete work by use of a chamfer strip placed in the form at the outside comer to provide a rounded or beveled comer.

An elongated void oropening formed into a concrete surface.

An opening in the forms for removal of refuse, closed before the concrete is placed.

Small board used to connect two or more pieces of formwork lumber together.

A form which is raised vertic ally for succeeding lifts of concrete in a given structure, usually supported on anchor bolts or rods embedded in the top of the previous lift. The form is moved only after an entire lift is placed
and (partially) hardened; this should not be confused with a slip form which moves during placement of the concrete.

The hex-head outer unit of a three-piece wall tie with extemal contoured threads to engage the helical threads of a coil tie inner unit.

The non-reusable inner unit or center part of a three-piece wall form tie. Ties are made with two or more straight wire struts with helix coils welded at each end forming female threads.

Any of the various types of stiffening or fastening units to hold a column form sides together

The surface where two adjacent placements of concrete meet, frequently with a keyway or reinforcement across the joint.

Formed, saw cut, or tooled groove in a concrete surface to regulate the location of shrinkage cracks.

The projection from the face of a concrete wall which is used to support a beam orelevated slab.

Intermediate stiffening member of a form panel connected at both ends of the perimeter frame.

An expendable strip of wood used as a pad to protect either the form or concrete surface from damage during prying action to strip forms.

Rectangular groove in the perimeter frame of a form which allows for the passage of ties without leaving a gap between forms.

The load of forms, stringers, joists, reinforcing rods, and the actual concrete to be placed.

A steel beam, block of concrete or other heavy item used to provide anchorage for a guy line or form brace.
[BACK TO MASCO.NET]
GLOSSARY OF TERMINOLOGY

MASCO.NET

DESIGN PRESSURE

DIAPHRAGM

DOUGHNUT

DRAFT

DUTCHMAN

EEVATION

EMBEDMENT

END-BARS

END-RAILS

EXPANSION JOINT

FACTOR OF SAFIY
FALSEWORK
(Shoring)

RUER

RШER STRIP

RШЕT
FORM COATING

FORMWORK

FULUQUID HEAD

The predetermined load persquare foot at form face predicated by pressure, temperature, rate of concrete placement and height of concrete above point considered.

Cross walls positioned between long span, deep beams to provide lateral stability to the beams.

A large washer of any shape to increase bearing area of bolts and form ties, also to act as a shim.

The slight taper difference between opposite sides of a form so that it will readily strip out the concrete.

Usually a solid lumber thickness utilized to fill in under one side of (cribbing) equal height wall forms such as on a side slope footing, also to compensate for lineal dimension variation between opposing forms due to a slight angle comer orcurved wall.

A drawing showing a specific area projection of a structure on a vertical plane.

An insert, anchor bolt or other device attached at the form face so as to be encapsulated by the concrete for future attachments or struc tural performance.

Perimeter frame members similar to end-rails but are usually perpendicular to crossmembers.

Perimeter frame members of prefab form panel which are perpendicular to side-rails.

A thickness of flexible material between consecutive placements of concrete to absorb linear expansion of concrete.

Ratio of ultimate load to allowable load.
The temporary structure erected to support work in the process of construction, such as shoring or vertical post to support an elevated wall or spandrel beam.

A non-standard width form panel used to take up odd dimensions.

Piece of wood, metal or other material placed between large ganged slab form areas and vertical surfaces to pemit easy stripping

A beveled orrounded inside comer.
Anti-bonding material applied to form face surface to induce easy stripping.

The total system of support for freshly placed concrete including the mold or sheathing which contacts the concrete as well as all supporting members, hardware, and necessary bracing.

Concrete pressure where the entire pour is still in a liquid state.

A large area of wall form with independent structural integrity. May also be a grouping of panels to be used as a unit for convenience in erecting, stripping and reusing.

GENERAL \& TECH INFO

GIRDER FORM	Self-supporting form system where the load is caried in bending by the side panels.
GRADE STRIP	A temporary wood strip secured to form face prior to concrete placement to denote finished grade elevation.
GUYS (GUY WRE)	Cable anchor from ground to top of wall form to brace in one direction through tension.
HAIRPIN	The wedge used to tighten some types of form ties, also a hairpinshaped anchor set in place while concrete is plastic.
HANDSETFORM	A modularform erected and stripped by hand ratherthan a crane.
HAUNCH	A projection built on a wall or column used to support a load outside the wall or column.
HE-BOLT	The outer unit of a three-piece wall tie, of which the extemal threads of the outer units engage the intemal threads of an inner unit such as a coiltie.
HEAD (LQQUID HEAT)	The vertic al height measurement of liquid concrete in wall form.
HONEYCOMB	Undesirable voids left in the formed concrete surface revealing unbonded coarse aggregates.
INIIALSET	An early state of the concrete curing process at transformation from a liquid to a solid.
INNER UNIT (INNER TIE)	The non-reusable center part of a three-piece she-bolt tie.
INSERT	A female threaded connectorembedded in a concrete to which a male anchor device can be connected.
INVERT	The lowest visible surface; the floor of a drain, sewer, tunnel, culvert, or channel.
J UMBO	Traveling support for forms, commonly used in gang-formed tunnel work.
KERF	To make a series of cuts or notches in order to curve a wood member.
KEYWAY	A recess or groove created in an earlier pour of concrete which is filled with concrete of the next pour giving shear strength to the joint.
KICKER	A piece of wood (block or board) or metal attached to a formwork member to take the thrust of a nother member.
KNEE BRACE	A brace between horizontal and vertical members in a building frame orformwork to make the structure more stable.
IFDGER	A horizontal structural member secured to a concrete wall and used to support forms.
UFTBEAM	See Spreader Beam.
UFTBRACKET	Special brackets attached to top of ganged forms to facilitate fast, safe attachment of crane sling lines.
UFIER	A lifting device used to vertic ally elevate ganged forms to subsequent vertic al reuses.

UNER
UVE LOAD
LOAD EQUAUZERS

MUDSIL

MULTI-UFT

ONE-SIDED FORMWORK

PANEL

PAN-JOIST

PARAPET
PENCILROD

PENEIRATION

PERMANENTFORM

MODULAR FORMWORK Prefabricated all-metal or metal-supportedplywood systems in standard sizes with an integral provision for tie and connecting hardware.

Concrete placement technique in which the slab, the beams, the columns, and the walls or any combination of the above elements are poured at the same time.

NAILER	Strip of wood or other material attached to or set in concrete or attached to steel to facilitate making nailed connections.

OFFSET $\begin{aligned} & \text { A displacement or abrupt change in line or the } \\ & \text { distance between two pa rallel lines; such as a } \\ & \text { change in wall thickness which will create }\end{aligned}$
Any sheet or layer of material attached directly to the inside face of the forms to improve surface quality, alter the texture, or to imprint specific architectural patterns on the finished concrete.

The total weight of workers, equipment, buggies, vibrators and other loads that will exist and move about due to the method of placement, leveling and screeding of the concrete pour.

A system of equalizing shea ves designed to distribute the load equally to each form lift point when multiple-leg slings are used to lift a form. are poured at the same time.

A plank, or concrete slab, on the ground, to provide a level surface and support to concrete forms.

The vertical stacking of forms in tiers for any height wall. A wall requiring more than one row of forms is generally referred to as multilift.

Strip of wood or other material attached to orset in concrete orattached to steel to faclutemaking naled connections. a vertical offset.

A wall formwork system having only one forming side, requiring special provisions for tieing and support. Commonly required when placing concrete against sheet pile, slurry walls, soldier beam embankments, and existing concrete or concrete block walls.

A section of form sheathing constructed from boards, plywood, metalsheets, etc., that can be erected and stripped as a unit. Panels can be built on jobsite or prefabricated factory built.

A light slab with ribs normally 24 to 36 inches on center acting as beams. The joists or ribs run at right angles to primary beams or girders.
Part of a wall that extends above the roof level.
Metal rod (wire), usually about $1 / 4$ " diameter, used in conjunction with special bearing clamps to perform as a wall form tie.

Any concrete embedment device that must pass through the form face (such as anchor bolts, rebar, or dowel rods).

Any form that remains in place after the concrete has developed its design strength. The form may or may not become an integral part of the structure.

PILASTER

PLATE

PLUMB
POST-TENSIONED CONCREIE

PRECASTCONCREIE

PRESTRESSED CONCREIE

REBAR
RETAINING WALL

RIBS

RIGGING

RUSTIFCATION

SAFETY FACTOR

SCAB

SCAFFOLD BRACKET

SCAFFOLDING

SCREED

SHEATHING

SHE-BOLT

SIDERAIL

SIL

SKIN PLATE

Column built with a wall, usually projecting beyond the wall face.

A flat horizontal member such as a 2×4 placed on the footing for leveling and upon which the forms are set, sometimes referred to as a "shoe."

Vertic al or the act of making vertical.
Reinforced concrete in which, after the concrete has set and sufficiently hardened, the desirable distribution of stress is a chieved by post tensioning steel tendons, bars or wires.

Concrete units (such as beams, joists, deck panels, or wall panels) cast elsewhere than its final position and then set in place.

A system for utilizing the compressive strength of concrete by producing required compressive stresses with highly stressed tension rods, tendons or wires.

Abbreviation for "Reinforcing Bar."
A wall, which is designed to resist horizontal loads such as those imposed by soil or water.

Parallel structural members backing sheathing in a prefabricated form. Same as crossmembers.

Suspension components, such as chains, shackles, connecting links and eye hooks used to suspend formwork gangs or components from a crane or similar lifting device.

A groove in the concrete formed by securing a strip to the face of the formwork. Also referred to as a "feature strip."

See Factor of Safety.
A small piece of wood fastened to two formwork members to secure a butt joint.

A premanufactured cantilevered bracket designed to attach to formwork gangs and support scaffold planks that are used for a work platform when placing and vibrating concrete.

An elevated platform supporting workers, tools, and materials, either attached to wall forms or free standing.

The tool used to control the top surface elevation of freshly placed concrete.

The material forming the contact face of forms, also called lagging or sheeting.

The outer unit of a three-piece wall tie that contains female threads to engage the external threaded inner unit (rod). SHIM Thin pieces of material used to bring abutting members to an even, level bearing.

Perimeter frame member of prefab form panel which is perpendic ular to crossmembers.

Horizontal bearing member as a plate. See Plate.

The steel form face of an all-steel form.

GLOSSARY OF TERMINOLOGY

MASCO.NET

GENERAL \& TECH INFO

| SLAB | The thinner portion of the floor, usually of uniform
 depth, that is between the drop heads or
 beams. | TELTALE |
| :--- | :--- | :--- | | Any device designed to indic ate movement of |
| :--- |
| fomwork. |

[^0]: Note: Chart is based on a concrete weight of 150 pounds per cubic foot

 * ACI 347 recommends a minimum 100 psf for form design or 125 psf if motorized carts are used.

